# QUANTIFYING SCALING LAW FEATURES: OPEN DATA TO TACKLE INTERTWINED ENVIRONMENTAL AND SOCIAL CHALLENGES

Anna Carbone
Politecnico di Torino
https://www.polito.it/en/staff?p=anna.carbone

TED4LAT Workshop, WIDERA, Horizon Europe Project Valmiera, 14-18 July 2025

### Urban Scaling Laws<sup>1</sup>

Aggregate urban features Y are linked to population size N by power-laws

$$Y \sim Y_0 N^{\beta} \tag{1}$$

where  $Y_0$  is a normalization constant and  $\beta$  is a scaling exponent capturing the non-linearity of Y as a function of N.

$$\begin{cases} \beta > 1 & \text{Socio-economic features} \\ \beta \approx 1 & \text{Individual features} \\ \beta < 1 & \text{Infrastructures features} \end{cases} \tag{2}$$

<sup>&</sup>lt;sup>1</sup>Luís MA Bettencourt et al. "Growth, innovation, scaling, and the pace of life in cities". In: *Proceedings of the National Academy of Sciences* 104.17 (2007), pp. 7301–7306.

#### Patents vs Population: Data for 107 Italian Metropolitan Areas 20 years<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Laura Alcamo et al. "A multi-scale approach to quantifying metropolitan innovation and recycling behaviour". In: *Journal of Infrastructure, Policy and Development* 8.9 (2024).

## Recycled waste fractions vs Population: Data for 107 Italian Metropolitan Areas 20 years





| Year (1)  | Patents' far             | milies (2) |                    | Patents (3) |                          |      |                    |      | Recycled material (4)    |      |                    |      |  |
|-----------|--------------------------|------------|--------------------|-------------|--------------------------|------|--------------------|------|--------------------------|------|--------------------|------|--|
|           | $\beta \pm \Delta \beta$ | R²         | R <sup>2</sup> Adj | ρ           | $\beta \pm \Delta \beta$ | R⁴   | R <sup>2</sup> Adj | ρ    | $\beta \pm \Delta \beta$ | R⁴   | R <sup>2</sup> Adj | ρ    |  |
| 2001      | $1.11 \pm 0.15$          | 0.37       | 0.36               | 0.73        | $1.22 \pm 0.19$          | 0,31 | 0.30               | 0.72 | $1.10 \pm 0.16$          | 0.32 | 0.31               | 0.66 |  |
| 2002      | $1.19 \pm 0.18$          | 0.32       | 0.31               | 0.69        | $1.38 \pm 0.21$          | 0.31 | 0.30               | 0.68 | $1.09 \pm 0.14$          | 0.33 | 0.32               | 0.67 |  |
| 2003      | $1.06 \pm 0.17$          | 0.31       | 0.31               | 0.69        | $1.11 \pm 0.21$          | 0.25 | 0.24               | 0.68 | $1.06 \pm 0.14$          | 0.32 | 0.31               | 0.71 |  |
| 2004      | $1.26 \pm 0.15$          | 0.42       | 0.41               | 0.74        | $1.36 \pm 0.19$          | 0.37 | 0.36               | 0.73 | $1.06 \pm 0.13$          | 0.33 | 0.32               | 0.74 |  |
| 2005      | $1.29 \pm 0.16$          | 0.40       | 0.40               | 0.74        | $1.47 \pm 0.20$          | 0.36 | 0.36               | 0.73 | $1.05 \pm 0.12$          | 0.40 | 0.39               | 0.76 |  |
| 2006      | $1.30 \pm 0.14$          | 0.47       | 0.47               | 0.73        | $1.50 \pm 0.18$          | 0.44 | 0.43               | 0.72 | $1.08 \pm 0.12$          | 0.42 | 0.41               | 0.76 |  |
| 2007      | $1.31 \pm 0.15$          | 0.46       | 0.45               | 0.74        | $1.40 \pm 0.19$          | 0.38 | 0.37               | 0.74 | $1.06 \pm 0.12$          | 0.41 | 0.40               | 0.77 |  |
| 2008      | $1.39 \pm 0.14$          | 0.49       | 0.49               | 0.76        | $1.57 \pm 0.17$          | 0.46 | 0.46               | 0.76 | $1.06 \pm 0.11$          | 0.44 | 0.43               | 0.79 |  |
| 2009      | $1.30 \pm 0.15$          | 0.44       | 0.44               | 0.74        | $1.35 \pm 0.18$          | 0.38 | 0.38               | 0.70 | $1.07 \pm 0.11$          | 0.49 | 0.49               | 0.84 |  |
| 2010      | $1.27 \pm 0.15$          | 0.43       | 0.42               | 0.72        | $1.32 \pm 0.18$          | 0.35 | 0.35               | 0.68 | $1.11 \pm 0.11$          | 0.52 | 0.51               | 0.83 |  |
| 2011      | $1.19 \pm 0.16$          | 0.36       | 0.35               | 0.69        | $1.25 \pm 0.21$          | 0.28 | 0.27               | 0.64 | $1.10 \pm 0.10$          | 0.57 | 0.56               | 0.87 |  |
| 2012      | $1.31 \pm 0.18$          | 0.36       | 0.35               | 0.67        | $1.56 \pm 0.20$          | 0.40 | 0.39               | 0.63 | $1.08 \pm 0.09$          | 0.57 | 0.57               | 0.88 |  |
| 2013      | $1.27 \pm 0.15$          | 0.44       | 0.43               | 0.67        | $1.42 \pm 0.20$          | 0.36 | 0.36               | 0.64 | $1.08 \pm 0.09$          | 0.64 | 0.64               | 0.91 |  |
| 2014      | $1.29 \pm 0.18$          | 0.35       | 0.34               | 0.66        | $1.42 \pm 0.24$          | 0.28 | 0.27               | 0.62 | $1.08 \pm 0.09$          | 0.60 | 0.60               | 0.91 |  |
| 2015      | $1.15 \pm 0.16$          | 0.36       | 0.36               | 0.66        | $1.25 \pm 0.18$          | 0.32 | 0.32               | 0.63 | $1.05 \pm 0.08$          | 0.64 | 0.64               | 0.92 |  |
| 2016      | $1.33 \pm 0.16$          | 0.42       | 0.41               | 0.65        | $1.38 \pm 0.19$          | 0.36 | 0.35               | 0.63 | $1.05 \pm 0.07$          | 0.65 | 0.65               | 0.93 |  |
| 2017      | $1.39 \pm 0.16$          | 0.45       | 0.44               | 0.67        | $1.48 \pm 0.19$          | 0.40 | 0.39               | 0.66 | $1.04 \pm 0.06$          | 0.73 | 0.73               | 0.94 |  |
| 2018      | $1.40 \pm 0.17$          | 0.41       | 0.41               | 0.71        | $1.39 \pm 0.19$          | 0.35 | 0.35               | 0.70 | $1.02 \pm 0.05$          | 0.80 | 0.80               | 0.95 |  |
| 2019      | $1.43 \pm 0.16$          | 0.45       | 0.45               | 0.71        | $1.43 \pm 0.18$          | 0.39 | 0.38               | 0.70 | $1.02 \pm 0.04$          | 0.83 | 0.82               | 0.95 |  |
| 2020      | $1.34 \pm 0.15$          | 0.45       | 0.44               | 0.73        | $1.41 \pm 0.18$          | 0.39 | 0.38               | 0.71 | $1.00 \pm 0.04$          | 0.85 | 0.85               | 0.95 |  |
| 2001-2020 | $1.41 \pm 0.15$          | 0.45       | 0.45               | 0.72        | $1.46 \pm 0.17$          | 0.41 | 0.41               | 0.69 | $1.04 \pm 0.08$          | 0.64 | 0.64               | 0.89 |  |

### Microscopic origin of Urban Scaling Laws<sup>3</sup>

Infrastructural and socio-economic features are written as power laws of the population size  $Y \sim N^{\beta}$  respectively with exponents:

$$\beta_i = 1 - \frac{D_f}{d(d + D_f)}$$
  $\beta_s = 1 + \frac{D_f}{d(d + D_f)}$  (3)

<sup>&</sup>lt;sup>3</sup>Luís MA Bettencourt. "The origins of scaling in cities". In: *science* 340.6139 (2013), pp. 1438–1441.

#### Microscopic origin of Urban Scaling Laws<sup>4</sup>

The interaction strength between individuals is modelled in terms of a scalar field varying inversely with the distance, yielding power laws for the infrastructural and socio-economic quantities with scaling exponents respectively:

$$\beta_i = \frac{\gamma}{D_f} \qquad \beta_s = 2 - \frac{\gamma}{D_f} \quad , \tag{4}$$

with  $\gamma$  varying in the range 1.0  $\div$  1.5 (noteworthy  $\gamma=1.0$  corresponds to the Newtonian gravitational law in d=2).

The long-range interaction regime, with  $\gamma/D_f < 1$ , implies  $\beta_s > 1$ , i.e. that superlinear socio-economic scaling behaviour occurs when each individual can interact with all other individuals of the city.

<sup>&</sup>lt;sup>4</sup>Fabiano L Ribeiro et al. "A model of urban scaling laws based on distance dependent interactions". In: *Royal Society open science* 4.3 (2017), p. 160926.

### Microscopic origin of Urban Scaling Laws<sup>5</sup>

City buildings extend over three dimensions. Socio-economic interactions are assumed to occur in a three dimensional rather than in a two-dimensional fractal infrastructure . The population is distributed in a fractal space, with dimension  $D_p$ , where  $D_f \leq D_p \leq D_f + 1$ . The scaling exponents for the infrastructures and the socio-economic activities as:

$$\beta_i = \frac{D_f}{D_p} \qquad \beta_s = 2 - \frac{D_f}{D_p} \quad . \tag{5}$$

<sup>&</sup>lt;sup>5</sup>Carlos Molinero and Stefan Thurner. "How the geometry of cities determines urban scaling laws". In: *Journal of the Royal Society interface* 18.176 (2021), p. 20200705.

## Microscopic origin of Urban Scaling Laws<sup>6</sup>



$$eta_i \qquad eta_s$$
  $eta_s$   $1-rac{D_f}{d(d+D_f)} \qquad 1+rac{D_f}{d(d+D_f)}$   $rac{\gamma}{D_f} \qquad \qquad 2-rac{\gamma}{D_f}$   $rac{D_f}{D_p} \qquad \qquad 2-rac{D_f}{D_p}$ 

<sup>&</sup>lt;sup>6</sup>Anna Carbone et al. "Atlas of urban scaling laws". In: *Journal of Physics: Complexity* 3.2 (2022), p. 025007.



Data / WorldView-2 European Cities

### WorldView-2 European Cities

#### Navigate To

How to Access Data

Available to Residents of the Following Countries

Collection Description

Technical Details

Having Problems Accessing Data?

Resources

Discover Latest Data

#### DATA SET SPECIFICATIONS

**Spatial coverage:** 66 N, 26 S, 19 W, 35 E

**Temporal coverage:** 2010-07-20 - 2015-07-19

**Date of launch:** 2009-10-08

Operators: Maxar

Mission status: onGoing

Orbit height: 770 km

**Orbit type:** Sun-synchronous

Swath width:

**Resolution:** Very High Resolution - VHR (0 - 5m)

16.4 km

Wavelengths: VIS (0.40 - 0.75  $\mu$ m), NIR (0.75 - 1.30  $\mu$ m)

Product types: WV-110 2A



The WorldView Series consists of high resolution commercial Earth imaging satellites.

WorldView-1 (2007) world's first 50 cm resolution commercial imaging satellite
WorldView-2 (2009) the first high resolution 8-band multispectral commercial satellite

WorldView-3 (2014) similar to WorldView-2 but positioned in a lower orbit WorldView-4 (2016) 31 cm panchromatic imagery and 1.23 m multispectral imagery



City: Torino ID: N45-024

X: 45.024 Y: 7.709

Date: 09-2011



City: Zurich ID: N47-377

X: 47.37 Y: 8.500

Date: 04-2014





#### Detrending Moving Average algorithm for arbitrary-dimensional fractals<sup>7</sup>

The generalized variance  $\sigma_{DMA}^2(s)$  is written as:

$$\sigma_{DMA}^{2}(s) = \frac{1}{V} \sum_{N} \left[ f(r) - \widetilde{f}_{n_1, n_2, n_3}(r) \right]^2, \qquad (6)$$

where  $f(r) = f(x_1, x_2, x_3)$  is the fractional Brownian field with  $i_1 = 1, 2, ..., N$ ,  $i_2 = 1, 2, ..., N$ ,  $i_3 = 1, 2, ..., N$ . The function  $\widetilde{f}_{n_1, n_2, n_3}(x_1, x_2, x_3)$  is given by:

$$\widetilde{f}_{n_1, n_2, n_3}(r) = \frac{1}{\nu} \sum_{k_2} \sum_{k_3} \sum_{k_3} f(x_1 - k_1, x_2 - k_2, x_3 - k_3), \qquad (7)$$

with the size of the subcubes  $(n_1, n_2, n_3)$  ranging from (3,3,3) to the maximum values  $(n_{1max}, n_{2max}, n_{3max})$ .  $\nu = n_1 n_2 n_3$  is the volume of the subcubes. The quantity  $V = (N_1 - n_{1max}) \cdot (N_2 - n_{2max}) \cdot (N_3 - n_{3max})$  is the volume of the fractal cube over which the averages  $\tilde{f}$  are defined.

<sup>7</sup>Anna Carbone. "Algorithm to estimate the Hurst exponent of high-dimensional fractals". In: *Physical Review E* 76.5 (2007), p. 056703.

### Detrending Moving Average Algorithm for arbitrary-dimensional fractals

Fractal fileds with H = 0.5.





#### Detrending Moving Average Algorithm forfor arbitrary-dimensional fractals

Averaged Fractal fields with H = 0.5.





### Detrending Moving Average Algorithm for arbitrary-dimensional fractals



The plot of  $\sigma^2_{DMA}$  vs.  $\mathcal{S} = \sqrt{(n_1^2 + n_2^2)}$  is a straight line, corresponding to the scaling relation:

$$\sigma_{DMA}^2 \sim \left[\sqrt{(n_1^2+n_2^2)}
ight]^{2H}$$
  $\sigma_{DMA}^2 \sim \mathcal{S}^{2H}$ 





THANKS FOR YOUR ATTENTION!

Anna Carbone

Politecnico di Torino

email:anna.carbone@polito.it